THE THIOPHENE AND PYRROLE CLATHRATES OF $Cd(en)Ni(CN)_{\downarrow}$ HOST LATTICE $Cd(en)Ni(CN)_{L}$. $2C_{L}H_{L}S$ AND $Cd(en)Ni(CN)_{L}$. $2C_{L}H_{L}NH$

Toschitake IWAMOTO and Yutaka OHTSU

Department of Chemistry, Faculty of Science, The University of Tokyo

Hongo, Tokyo 113

The thiophene and pyrrole clathrates $\mathrm{Cd}(\mathrm{en})\mathrm{Ni}(\mathrm{CN})_{4}.2\mathrm{C}_{4}\mathrm{H}_{4}\mathrm{S}$ and $\mathrm{Cd}(\mathrm{en})-\mathrm{Ni}(\mathrm{CN})_{4}.2\mathrm{C}_{4}\mathrm{H}_{4}\mathrm{NH}$ were prepared. Their structures were discussed with the data of the unit cell dimensions and the infrared spectra in comparison with the known benzene clathrate $\mathrm{Cd}(\mathrm{en})\mathrm{Ni}(\mathrm{CN})_{4}.2\mathrm{C}_{6}\mathrm{H}_{6}$, of which the infrared spectrum was reassigned. The c-dimension of unit cell, $\underline{\mathrm{i}}.\underline{\mathrm{e}}.$, the length of Cd-en-Cd bridge in the host lattice decreases in the order of guest species, benzene, thiophene and pyrrole, identical with that of decreasing diameter of the aromatic ring.

The benzene clathrate $Cd(en)Ni(CN)_{4}.2C_{6}H_{6}$ (I) has the three-dimensional host lattice structure built of catena-u-en and catena-u-CN ligands bridging between metal ions. 1,2) The crystals of I belong to the tetragonal space group P4/m with one formula unit per unit cell. 2) The CN ligands span adjacent Ni and Cd atoms to extend CN-linked sheets in the ab-plane, and the en ligands span Cd atoms in adjacent sheets along the c-axis of crystal. The 8.06 A length of Cd-en-Cd bridge, i. e., the c-dimension of unit cell, is longer by ca. 0.38 A than 7.68 A, the length of Pt-en-Pt bridge in $LPt(acac)(CH_3)_3]_2en.^3$ The lengthening of the Cd-en-Cd bridge (the c-dimension) in I appears to be caused by the repulsion between the guest benzene molecule and the CN-linked metal complex sheets. If the c-dimension is affected by the size of guest molecule, its contraction will be expected in the thiophene or pyrrole clathrate of the same host lattice, because these five-membered aromatic molecules have the diameter smaller than that of benzene molecule. In fact, the c-dimension of the Hofmann-type clathrate $Cd(NH_3)_2Ni(CN)_4$. 2G decreases in the order of G guest species, aniline, benzene, thiophene and pyrrole. 4) The Cd- $(NH_3)_2Ni(CN)_4$ host lattice, however, does not take three-dimensional network but

takes a lamellar stacking of the metal cyanide sheets with the ammonia molecules protruding from Cd atoms. 5)

The thiophene clathrate $Cd(en)Ni(CN)_{4}.2C_{4}H_{4}S$ (II) was prepared as bright yellow crystals by the method similar to that for I but a thiophene-toluene mixture was used as the organic phase. Anal. Found: C, 31.14; H, 2.57; N, 18.01; Cd, 22.89; Ni, 12.65%. Calcd for $C_{14}H_{16}N_{6}S_{2}CdNi$: C, 33.39; H, 3.20; N, 16.69; Cd, 22.32; Ni, 12.51%. The pyrrole clathrate $Cd(en)Ni(CN)_{4}.2C_{4}H_{4}NH$ (III) was prepared as bright yellow crystals similarly by using liquid pyrrole as the organic phase. Anal. Found: C, 34.54; H, 3.69; N, 24.35; Cd, 24.46; Ni, 11.68%. Calcd for $C_{14}H_{18}N_{8}CdNi$: C, 35.82; H, 3.86; N, 23.87; Cd, 23.94; Ni, 11.66%.

The powder x-ray diffraction data and preliminary precession photographs of single crystals were indexed to the tetragonal sytems with the unit cell dimensions a = 7.67 A and c = 7.90 A for II, and a = 7.62 A and c = 7.73 A for III, respectively. In Table 1 the powder diffraction data are shown. In Table 2 the unit cell

Table 1. Powder x-ray diffraction data.

	Cu-KX	, Ni-fil	terd, GM-	-counter							
		i(CN) ₄ .20	1 1	= 7.90 A	$Cd(en)Ni(CN)_{\mu}.2C_{\mu}H_{\mu}NH$ tetragonal: a = 7.62 A and c = 7.73 A						
	Jilai: 6		A and C	- 7.90 A							
2 0	I	dobs	(hkl)	^d calc	20	I	^d obs	(hkl)	^d calc		
11.21	77	7.892	(001)	7.896	11.42	100	7.748	(001)	7.726		
11.52	10	7.68	(100)	7.672	11.62	23	7.61 ₅	(100)	7.61 ₅		
16.35	37	5.42	(110)	5.42 ₅	16.48	42	5.37 ₉	(110)	5.385		
19.87	83	4.468	(111)	4.47	20.12	95	4.415	(111)	4.419		
22.51	100	3.95 ₀	(002)	3.94 ₈	23.02	100	3.86 ₄	(002)	3.867		
23.18	21	3.837	(200)	3.836	23.41	22	3.80 ₀	(200)	3.808		
26.00	20	3.427	(210)	3.43 ₁	06.00	lı o	2 20	(201)	3.41 ₆		
27.93	22	3.194	(112)	3.192	26,23	42	3.39 ₇	(210)	3.406		
33.17	22	2.703	(220)	2.717	33.34	45	2.687	(220)	2.693		
34.06	36	2.632	(003)	2.632	34.80	50	2.578	(003)	2.578		
34.72	7	2.584	(212)	2.589	36.85	5	2.439	(103)	2.442		
35.12	24	2.555	(300)	2.557	37.41	5	2.404	(310)	2.408		
37.00	11	2.43 ₀	(301)	2.433	38.77	22	2.323	(113)	2.325		
			(310)	2.426	39.27	11	2.297	(311)	2.298		
37.97	11	2.370	(113)	2.368	40.93	16	2.20	(222)	2.21		

dimensions of I, II and III, and those of the corresponding Hofmann-typ clathrates are compared. The c-dimensions of the both series of clathrates decrease in the order of guest species, benzene, thiophene and pyrrole. The c-dimension of the enbridged host lattice is always smaller than that of the Hofmann-type host lattice for the same guest species. That of III, 7.73 A, is still longer than 7.68 A, the Pt-en-Pt length in [Pt(acac)(CH₃)₃]₂en. These facts give an idea that the equilibrium between the bridging force of en and the host-guest repulsive force rules the c-dimension of the en-bridged host clathrate where the length of Cd-en-Cd bridge holds a flexibility within a range 7.73 - 8.06 A depending upon the guest species. This idea is supported by another experimental fact that the en-bridged host can never enclathrate aniline molecule the diameter of which is too large for the enbridged structure if the NH₂ group of aniline is taken into account.

Host C6H5NH2 $C_{4}H_{4}NH$ Guest ^C6^H6 $C_{\mu}H_{\mu}S$ 7.68 7.67 7.62 а Cd(en)Ni(CN), 8.06 7.90 7.73 С 7.56 7.56 7.60 7.61 а Cd(NH₃)₂Ni(CN)₄ 8.66 8.32 С 8.22 8.13

Table 2. The unit cell dimensions. (A)

In spite of the $\rm C_{2v}$ symmetry of thiophene and pyrrole molecules, the crystals of II and III contain only one formula unit per unit cell as well as those of I do with the $\rm D_{6h}$ symmetry of benzene molecule. The tetragonal symmetry of the crystals for II and III with these unit cell constituents can be rationalized if one assumes (i) an arrangement of the $\rm C_{2v}$ axis parallel to the c-axis of crystal, (ii) a statistically random orientations of the $\rm C_{2v}$ axes, or (iii) a rapid molecular motion about an axis perpendicular to the aromatic ring. The last case is rather improbable, because the rigid thiophene and the almost rigid pyrrole molecules have been observed for the corresponding Hofmann-type clathrates at room temperature by wide-line $^{1}{\rm H-NMR}$, $^{6}{\rm I}$

No significant effects of the host lattice contraction were observed in the infrared spectra of II and III compared with that of I. The wave numbers of bands assigned to the host lattice modes were almost indifferent among I, II and III.

Table 3. The infrared bands.*1 (cm^{-1})

I	I-1	I-2	I-3	II	III	I'	Assignment*2
					3348 vs		pyrrole
3360 s 3314 m 3294 s 3258 m	2492 s 2466 wsh 2418 m	3376 m 3325 m 3 282 wsh	2492 s 2462 w 2416 m	3357 m 3310 wsh 3293 m 3254 vw	3360 m 3311 s 3300 msh 3254 s	3375 s 3316 s	NH ₂ asym. & sym. sym. str.
3072 w 3055 w 3019 m	3073 m 3055 w 3019 m	2282 m	2284 m 2272 w 2260 w				benzene
					3100 vw		pyrrole
	* 3			3090 w			thiophene
2966 w 2958 w		2971 m		2964 w	2968 w 2944 wsh 2932 w	2974 w	CH ₂ asym. &
2908 m 2864 w		2911 m 2867 w		2905 m 2862 w	2913 w 2870 w	2906 m 2886 w] sym. str.
21 <i>55</i> s 2146 s	2144 s*4	2152 s*4	2152 s*4	2155 s 2146 s	2154 s 2145 s	21 <i>5</i> 4 s	CN str.
1592 s	1176 s	1585 s	1175 s	1590 s	1590 s	1589 s	NH ₂ scic.
					1537 s		pyrrole
				1507 vw			thiophene
1479 s	1478 s	1325 m	1329 s				benzene
1462 s		1460 s		1463 w	1466 w	1451 m	CH ₂ scic.
					1452 w		pyrrole
					1419 w		pyrrole
1000	1000	(4207)*5	2(4000)	1410 w	4.0.00	4.24.0	thiophene
1330 w	1332 w	(1325 m)*5		1330 w	1337 w	1312 m	CH ₂ wag
1320 wsh		1268 w	1260 w			1.000	benzene
1283 vw		1278 vw	1286 vw	1050		1270 w	CH ₂ twist
				1252 m	1244 vw		thiophene pyrrole
1148 w	1147 m	823 m	823 m		1244 VW		benzene
1140 W	1147 III	02) III	02) III		1140 m		pyrrole
1115 vw		1112 vwsh	1	1113 vwsh		1117 w	ריייייייייייייייייייייייייייייייייייייי
1089 s	845 s	1088 s	845 s	1083 s	1088 s		NH ₂ wag
1063 vw		1062 vwsh	1	1065 vwsh		1062 w	J ~
					1098 s 1076 s		
					1048 s		pyrrole
				100/ -	1028 s		J +hiomhono
10/12 ~	10/10 0	Q1 r m	Q1 2 m	1026 s			thiophene
1042 s 1035 m	1040 s 1033 m	815 m 810 m	812 m 807 m				}benzene
1020 s	(691 vs)	1018 s	688 m	1019 s	1019 s	1017 s	NH ₂ twist
997 s	999 vs	993 vs	998 vs	995 vs	997 s	992 vs	₩
958 s	(691 vs)	956 s	699 m	957 s	958 m	9 <i>5</i> 7 s	NH ₂ twist
					883 vw		}pyrrole
0.47	/ Oliver - N	0 41	(0)	0 * *	867 w	0.50	J
856 vw	(845 s)	854 vw	(845 s)	855 vw	850 w	857 w	CH ₂ rock

(Table 3. continued)

774 vw	763	vw	772 758		754	vw					7 <i>5</i> 9 1	rw	skeletal?
									744	vs			pyrrole
							734	s					thiophene
							713	S					thiophene
690 vs 672 s	691	vs	509	s	510	S							}benzene
667 ws	h		667	w									skeletal?
									641	vw			pyrrole
			615	vw	615	w					625	wbr	skeletal?
							608	vw					thiophene
585 s 550 sb 462 s	r (417	sbr)		sbr ((423	sbr)	552 466		548 466		585 560 465	vw	NH ₂ rock
							458	m					thiophene
451 w 444 ws		vwsh wsh	449 440		449	vw	449	vw	450 442	vwsh wsh	440	vwsh wsh	Ni-CN
428 ss 420 sb		sbr	430 420		425 423		430 424		424 sbi	sbr	425	25 sbr -	

^{*1.} Those were measured in $4000 - 400 \text{ cm}^{-1}$ region for the Nujol and the HCB (I, II, III and I') mulls.

The bridging en molecule in its trans configuration in I was suggested from the infrared spectrum simpler than those observed for the en-chelate complexes. The en-bridged structure has been established by single crystal x-ray diffraction method. The spectral features of I, II and III, however, are not so simple as those observed for the $M(en)X_2$ complexes (M = Cd, Hg; X = Cl, Br, SCN) in which the mutual exclusions of infrared and Raman bands have been established to support the trans configuration of en molecule. The considerably complex structure of infrared bands was observed in the 1120 - 400 cm⁻¹ region for I, II and III. Therefore the infrared assignments were reexamined by comparison of the spectra among those of I, $Cd(en-d_4)Ni(CN)_4.2C_6H_6$ (I-1), $Cd(en)Ni(CN)_4.2C_6D_6$ (I-2), $Cd(en-d_4)Ni(CN)_4.2C_6D_6$ (I-3), and $Cd(en)Ni(CN)_4$ (I') which is the residual host lattice obtained after removing the guest benzene molecules completely from I. In I-1 and I-3, $en-d_4$ refers to $ND_2CH_2CH_2ND_2$.

^{*2.} Those assigned to the ND_2 modes and the C_6D_6 modes are listed in the lines of the corresponding NH_2 and C_6H_6 modes respectively.

^{*3.} Those were hidden by the Nujol's bands.

^{*4.} Doublets may be observed by high-resolution measurements.

^{*5.} The stronger bandin parenthesis appears to overlap the corresponding band.

According to the present results, the previous assignments¹⁾ should be revised as shwon in Table 3. The bands sensitive to the deuteration of the NH₂ group of en displayed such complex features as follows: (i) the strong bands at 1020 cm⁻¹ and 958 cm⁻¹ in I disappeared in the en-d_{μ} specimens but the corresponding ND₂ band was a singlet at 688 cm⁻¹, (ii) the band at 1089 cm⁻¹, tentatively assigned to the NH₂ wag mode, disappeared in I' but a pair of weak satellites at 1117 cm⁻¹ and 1062 cm⁻¹ remained, and (iii) the strong band at 550 cm⁻¹ in I disappeared in I' Besides them, a band at ca. 465 cm⁻¹ was observed for all the specimens except two en-d_{μ} ones. These facts suggest that complex couplings occur among the NH₂ modes and that these couplings are sensitive to the host-guest interactions which may affect the effective symmetry of the en molecule in crystals.

This work was financially supported in part by the Itoh Science Foundation.

- 1) T. Iwamoto, Inorg. Chim. Acta, 2, 269 (1968).
- 2) T. Miyoshi, T. Iwamoto and Y. Sasaki, Inorg. Nucl. Chem. Lett., <u>6</u>, 21 (1970); Inorg. Chim. Acta, 6, 59 (1972).
- 3) A. Robson and M. R. Truter, J. Chem. Soc., 1965, 630.
- 4) T. Iwamoto, T. Nakano, M. Morita, T. Miyoshi, T. Miyamoto and Y. Sasaki, Inorg. Chim. Acta, 2, 313 (1968).
- 5) Y. Sasaki, Bull. Chem. Soc. Japan, 42, 2412 (1969).
- 6) T. Miyamoto, T. Iwamoto and Y. Sasaki, J. Mol. Spectry., 33, 244 (1970).
- 7) T. Iwamoto and D. F. Shriver, Inorg. Chem., 10, 2428 (1971).

(Received March 28, 1972